<-- Icons -->
  • People
  • Research
  • Projects
  • Publications
  • Resources
ViCoS Lab

Publication types

  • All
  •   Article
  •   Book
  • Other
  •   Paper
  • Unpublished
  •  
    Cross-modal learning
    Danijel Skočaj, Geert-Jan M. Kruijff and Aleš Leonardis
    Encyclopedia of the Sciences of Learning, Springer, 2012
  •  
    Learning hierarchical representations of object categories for robot vision
    Aleš Leonardis and Sanja Fidler
    Springer Tracts in Advanced Robotics, 2011
  •  
    Categorial Perception
    M. Fritz, M. Andriluka, Sanja Fidler, M. Stark, Aleš Leonardis and Bernt Schiele
    Cognitive Systems, Springer, 2010
  •  
    Integrating Visual Context and Object Detection within a Probabilistic Framework
    Roland Perko, Christian Wojek, Bernt Schiele and Aleš Leonardis
    Attention in Cognitive Systems, Springer LNAI, 2009
  •  
    Learning Hierarchical Compositional Representations of Object Structure
    Sanja Fidler, Marko Boben and Aleš Leonardis
    Object Categorization: Computer and Human Vision Perspectives, Cambridge University Press, 2009
  •  
    Tracking people in video data using probabilistic models
    Matej Kristan
    Phd thesis, 2008
  •  
    Context Driven Focus of Attention for Object Detection
    Roland Perko and Aleš Leonardis
    Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint (WAPCV 2007), Springer LNAI, 2007
  •  
    Sekvenčne Monte Carlo metode za sledenje oseb v računalniškem vidu
    Matej Kristan
    2005
  •  
    Robust subspace approaches to visual learning and recognition
    Danijel Skočaj
    2003
  •  
    Sledenje objektov v robotskem nogometu
    Matej Kristan
    2003
  •  
    Avtomatsko modeliranje 3-dimenzionalnih veèbarvnih predmetov z uporabo globinskega senzorja
    Danijel Skočaj
    1999
Faculty of Computer and Information Science

Visual Cognitive Systems Laboratory

University of Ljubljana

Faculty of Computer and Information Science

Večna pot 113
SI-1000 Ljubljana
Slovenia
Tel.: +386 1 479 8245