<-- Icons -->
  • People
  • Research
  • Projects
  • Publications
  • Resources
ViCoS Lab

Autonomous boats perception methods

Researchers

Matej Kristan, PhD
Matej Kristan, PhD

Low-end small unmanned surface vehicles (USV) are higly agile machines ideal for patrolling coastal waters. Such vehicles are typically used in perimeter surveillance, in which the USV travels along a pre-planned path. To quickly and efficiently respond to the challenges from highly dynamic environment, the USV requires an onboard logic to observe the surrounding, detect potentially dangerous situations, and apply proper route modifications. This page is a collection of algorithms and approaches that we have developed for such machines.

Projects

DAViMaRAdaptive deep perception methods for autonomous surface vehicles

April 2020 - August 2023
The project primary goal is to develop the next-generation maritime environment perception methods, which will harvest the power of end-to-end trainable deep models for essential challenges of safe operation like: general obstacle detection with re-identification, implicit detection of hazardous areas and sensor fusion for improved detection.

ViAMaRoRobust computer vision methods for autonomous water surface vehicles

May 2017 - April 2020
The project primary goal is to develop functionalities required for robust autonomous navigation of USVs in uncontrolled environments, primarily relying on the captured visual information. The project focuses on obstacle detection using monocular and stereo systems, development of efficient visual tracking algorithms for marine environments and environment representation through sensor fusion.

Publications

  •  
    HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
    Marko Rus, Hrvoje Mihanović, Matjaž Ličer and Matej Kristan
    Geoscientific Model Development, Copernicus Publications, 2025
  •  
    2nd Workshop on Maritime Computer Vision (MaCVi) 2024: Challenge Results
    Benjamin Kiefer, Lojze Žust, Matej Kristan, Janez Perš, Matija Teršek, Arnold Wiliem, Martin Messmer, Cheng-Yen Yang, Hsiang-Wei Huang, et al.
    Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024
  •  
    A Novel Unified Architecture for Low-Shot Counting by Detection and Segmentation
    Jer Pelhan, Alan Lukežič, Vitjan Zavrtanik and Matej Kristan
    The Thirty-Eighth Annual Conference on Neural Information Processing Systems, NeurIPS2024, 2024
  • HIDRA3: A Robust Deep-Learning Model for Multi-Point Sea-Surface Height and Storm Surges Forecasting
    Marko Rus, Hrvoje Mihanović, Matjaž Ličer and Matej Kristan
    55th International Liège Colloquium on Ocean Dynamics, 2024
  • HIDRA3: A Robust Deep-Learning Model for Multi-Point Sea-Surface Height Forecasting
    Marko Rus, Hrvoje Mihanović, Matjaž Ličer and Matej Kristan
    EGU General Assembly 2024, 2024
  •  
    1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results
    Benjamin Kiefer, Matej Kristan, Janez Perš, Lojze Žust, Fabio Poiesi, Fabio Augusto de Alcantara Andrade, Alexandre Bernardino, Matthew Dawkins, Jenni Raitoharju, et al.
    WACVW 2023, 2023
  •  
    A Low-Shot Object Counting Network With Iterative Prototype Adaptation
    Nikola Djukic, Alan Lukežič, Vitjan Zavrtanik and Matej Kristan
    ICCV2023, 2023
  • Deep-learning transformer-based sea level modeling ensemble for the Adriatic basin
    Marko Rus, Matej Kristan and Matjaž Ličer
    54th International Liège Colloquium on Ocean Dynamics, 2023
  •  
    eWaSR — An Embedded-Compute-Ready Maritime Obstacle Detection Network
    Matija Tersek, Lojze Žust and Matej Kristan
    Sensors, MDPI, 2023
  •  
    Hallucinating Hidden Obstacles for Unmanned Surface Vehicles Using a Compositional Model
    Jon Muhovič, Gregor Koporec and Janez Perš
    Computer Vision Winter Workshop 2023 : proceedings of the 26th Computer Vision Winter Workshop, 2023
  •  
    HIDRA-T – A Transformer-Based Sea Level Forecasting Method
    Marko Rus, Anja Fettich, Matej Kristan and Matjaž Ličer
    International Electrotechnical and Computer Science Conference (ERK), 2023
  • HIDRA2: deep-learning ensemble sea level and storm tide forecasting in the presence of seiches – the case of the northern Adriatic
    Marko Rus, Anja Fettich, Matej Kristan and Matjaž Ličer
    EGU General Assembly 2023, 2023
  •  
    HIDRA2: deep-learning ensemble sea level and storm tide forecasting in the presence of seiches – the case of the northern Adriatic
    Marko Rus, Anja Fettich, Matej Kristan and Matjaž Ličer
    Geoscientific Model Development, Copernicus Publications, 2023
  •  
    Joint calibration of a multimodal sensor system for autonomous vehicles
    Jon Muhovič and Janez Perš
    Sensors, MDPI, 2023
  •  
    LaRS: A Diverse Panoptic Maritime Obstacle Detection Dataset and Benchmark
    Lojze Žust, Janez Perš and Matej Kristan
    ICCV 2023, 2023
  •  
    Multi-modal Obstacle Avoidance in USVs via Anomaly Detection and Cascaded Datasets
    Tilen Cvenkel, Marija Ivanovska, Jon Muhovič and Janez Perš
    International Conference on Advanced Concepts for Intelligent Vision Systems, Springer, 2023
  •  
    A Long-Term Discriminative Single Shot Segmentation Tracker
    Benjamin Džubur, Alan Lukežič and Matej Kristan
    International Electrotechnical and Computer Science Conference (ERK), 2022
  • Improvements of the Adriatic Deep-Learning Sea Level Modeling Network HIDRA
    Marko Rus, Matjaž Ličer and Matej Kristan
    MAELSTROM dissemination workshop, 2022
  •  
    Learning Maritime Obstacle Detection from Weak Annotations by Scaffolding
    Lojze Žust and Matej Kristan
    WACV 2022, 2022
  •  
    Learning with Weak Annotations for Robust Maritime Obstacle Detection
    Lojze Žust and Matej Kristan
    Sensors, MDPI, 2022
  •  
    Prototipi značilk za adaptivno zaznavanje ovir na vodni površini
    Lojze Žust and Matej Kristan
    International Electrotechnical and Computer Science Conference (ERK), 2022
  •  
    Temporal Context for Robust Maritime Obstacle Detection
    Lojze Žust and Matej Kristan
    IROS 2022, 2022
  •  
    The Tenth Visual Object Tracking VOT2022 Challenge Results
    Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder, Joni-Kristian Kamarainen, Hyung Jin Chang, Martin Danelljan, Luka Čehovin Zajc, et al.
    ECCV Workshops 2022, 2022
  •  
    Towards on-the fly multi-modal sensor calibration
    Jon Muhovič and Janez Perš
    International Electrotechnical and Computer Science Conference (ERK), 2022
  •  
    Trans2k: Unlocking the Power of Deep Models for Transparent Object Tracking
    Alan Lukežič, Žiga Trojer, Jiří Matas and Matej Kristan
    In Proceedings of the British Machine Vision Conference (BMVC), 2022
  •  
    A Discriminative Single-Shot Segmentation Network for Visual Object Tracking
    Alan Lukežič, Jiří Matas and Matej Kristan
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021
  •  
    HIDRA 1.0: deep-learning-based ensemble sea level forecasting in the northern Adriatic
    Lojze Žust, Anja Fettich, Matej Kristan and Matjaž Ličer
    Geoscientific Model Development, Copernicus Publications, 2021
  •  
    MODS--A USV-Oriented Object Detection and Obstacle Segmentation Benchmark
    Borja Bovcon, Jon Muhovič, Duško Vranac, Dean Mozetič, Janez Perš and Matej Kristan
    IEEE Transactions on Intelligent Transportation Systems, 2021
  •  
    Prepletanje umetne inteligence in fizike pri napovedovanju obalnih poplav
    Matjaž Ličer, Lojze Žust and Matej Kristan
    Alternator, 2021
  •  
    The Ninth Visual Object Tracking VOT2021 Challenge Results
    Matej Kristan, Jirı Matas, Aleš Leonardis, Michael Felsberg, Roman Pflugfelder, Joni-Kristian Kamarainen, Hyung Jin Chang, Martin Danelljan, Luka Čehovin Zajc, et al.
    VOT2021 challenge workshop, ICCV workshops, 2021
  •  
    Video segmentation of water scenes using semi supervised learning
    Blaž Česnik, Lojze Žust and Matej Kristan
    ERK2021, 2021
  •  
    WaSR -- A Water Segmentation and Refinement Maritime Obstacle Detection Network
    Borja Bovcon and Matej Kristan
    IEEE Transactions on Cybernetics, TCYB, 2021
  •  
    DAL: A Deep Depth-Aware Long-term Tracker
    Yanlin Qian, Song Yan, Alan Lukezic, Matej Kristan, Joni-Kristian Kämäräinen and Jiri Matas
    ICPR, 2020
  •  
    A segmentation-based approach for polyp counting in the wild
    Vitjan Zavrtanik, Martin Vodopivec and Matej Kristan
    Engineering Applications of Artificial Intelligence, Elsevier, 2020
  •  
    A water-obstacle separation and refinement network for unmanned surface vehicles
    Borja Bovcon and Matej Kristan
    2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020
  •  
    Correcting decalibration of stereo cameras in self-driving vehicles
    Jon Muhovič and Janez Perš
    Sensors, 2020
  •  
    D3S - A Discriminative Single Shot Segmentation Tracker
    Alan Lukežič, Jiří Matas and Matej Kristan
    IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020
  •  
    Performance Evaluation Methodology for Long-Term Single Object Tracking
    Alan Lukežič, Luka Čehovin Zajc, Tomáš Vojíř, Jiří Matas and Matej Kristan
    IEEE Transactions on Cybernetics, 2020
  •  
    Spatially-Adaptive Filter Units for Compact and Efficient Deep Neural Networks
    Domen Tabernik, Matej Kristan and Aleš Leonardis
    International Journal of Computer Vision, 2020
  •  
    The Eighth Visual Object Tracking VOT2020 Challenge Results
    Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder, Joni-Kristian Kamarainen, Luka Čehovin Zajc, Martin Danelljan, Alan Lukezic, et al.
    ECCV2020 workshops, 2020
  •  
    CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark
    Alan Lukežič, Ugur Kart, Jani Käpylä, Ahmed Durmush, Joni-Kristian Kämäräinen, Jiří Matas and Matej Kristan
    IEEE International Conference on Computer Vision (ICCV), 2019
  •  
    Object Tracking by Reconstruction with View-Specific Discriminative Correlation Filters
    Ugur Kart, Alan Lukežič, Matej Kristan, Joni-Kristian Kamarainen and Jiri Matas
    Computer Vision and Pattern Recognition (CVPR), 2019
  •  
    Obstacle Tracking for Unmanned Surface Vessels using 3D Point Cloud
    Jon Muhovič, Rok Mandeljc, Borja Bovcon, Matej Kristan and Janez Perš
    Journal of Oceanic Engineering, IEEE, 2019
  •  
    The MaSTr1325 dataset for training deep USV obstacle detection models
    Borja Bovcon, Jon Muhovič, Janez Pers and Matej Kristan
    2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2019
  •  
    The Seventh Visual Object Tracking VOT2019 Challenge Results
    Matej Kristan, Jiri Matas, Aleš Leonardis, Michael Felsberg, Roman Pflugfelder, Joni-Kristian Kamarainen, Luka Čehovin Zajc, Ondrej Drbohlav, Alan Lukezic, et al.
    ICCV 2019 workshops, 2019
  •  
    Depth Fingerprinting for Obstacle Tracking using 3D Point Cloud
    Jon Muhovič, Rok Mandeljc, Borja Bovcon and Janez Perš
    Computer vision winter workshop, 2018
  •  
    Discriminative Correlation Filter Tracker with Channel and Spatial Reliability
    Alan Lukežič, Tomas Vojir, Luka Čehovin Zajc, Jiri Matas and Matej Kristan
    International Journal of Computer Vision, Springer, 2018
  •  
    Fast Spatially Regularized Correlation Filter Tracker
    Alan Lukežič, Luka Čehovin Zajc and Matej Kristan
    International Electrotechnical and Computer Science Conference (ERK), 2018
  •  
    FuCoLoT - A Fully-Correlational Long-Term Tracker
    Alan Lukežič, Luka Čehovin Zajc, Tomas Vojir, Jiri Matas and Matej Kristan
    Asian Conference on Computer Vision, 2018
  •  
    Obstacle Detection for USVs by Joint Stereo-View Semantic Segmentation
    Borja Bovcon and Matej Kristan
    2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018
  •  
    Spatially-Adaptive Filter Units for Deep Neural Networks
    Domen Tabernik, Matej Kristan and Aleš Leonardis
    Computer Vision and Pattern Recognition, 2018
  •  
    Stereo obstacle detection for unmanned surface vehicles by IMU-assisted semantic segmentation
    Borja Bovcon, Rok Mandeljc, Janez Perš and Matej Kristan
    Robotics and Autonomous Systems, Elsevier, 2018
  •  
    The sixth Visual Object Tracking VOT2018 challenge results
    Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg, Roman Pfugfelder, Luka Čehovin Zajc, Tomas Vojir, Goutam Bhat, Alan Lukezic, et al.
    VOT2018 workshop, ECCV2018, 2018
  •  
    Towards automated scyphistoma census in underwater imagery : a useful research and monitoring too
    Martin Vodopivec, Rok Mandeljc, Tihomir Makovec, Alenka Malej and Matej Kristan
    Journal of sea research, 2018
  •  
    Towards automated scyphistoma census in underwater imagery: a useful research and monitoring tool
    Martin Vodopivec, Rok Mandeljc, Tihomir Makovec, Alenka Malej and Matej Kristan
    Journal of Sea Research, 2018
  •  
    Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking
    Luka Čehovin Zajc, Alan Lukežič, Aleš Leonardis and Matej Kristan
    IEEE International Conference on Computer Vision (ICCV2017), 2017
  •  
    Deformable Parts Correlation Filters for Robust Visual Tracking
    Alan Lukežič, Luka Čehovin Zajc and Matej Kristan
    IEEE Transactions on Cybernetics, 2017
  •  
    Detekcija ovir iz 3D oblaka točk za potrebe avtonomne plovbe
    Jon Muhovič, Rok Mandeljc, Borja Bovcon and Janez Perš
    Zbornik šestindvajsete mednarodne Elektrotehniške in računalniške konference ERK 2017, 2017
  •  
    Discriminative Correlation Filter with Channel and Spatial Reliability
    Alan Lukežič, Tomas Vojir, Luka Čehovin Zajc, Jiri Matas and Matej Kristan
    The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
  •  
    Improving vision-based obstacle detection on USV using inertial sensor
    Borja Bovcon, Rok Mandeljc, Janez Perš and Matej Kristan
    Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis, IEEE, 2017
  •  
    Sledenje objektov s kvadrokopterjem z gibljivo kamero
    Jon Muhovič and Matej Kristan
    ERK 2017, 2017
  •  
    The Visual Object Tracking VOT2017 Challenge Results
    Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder, Luka Čehovin Zajc, Tomas Vojir, Gustav Häger, Alan Lukežič, et al.
    VOT workshop 2017, ICCV workshops 2017, 2017
  •  
    TraX: The visual Tracking eXchange Protocol and Library
    Luka Čehovin Zajc
    Neurocomputing, 2017

Faculty of Computer and Information Science

Visual Cognitive Systems Laboratory

University of Ljubljana

Faculty of Computer and Information Science

Večna pot 113
SI-1000 Ljubljana
Slovenia
Tel.: +386 1 479 8245