<-- Icons -->
  • People
  • Research
  • Projects
  • Publications
  • Resources
ViCoS Lab

Authors

Domen Tabernik, PhD
Domen Tabernik, PhD
Matej Kristan, PhD
Matej Kristan, PhD
Jeremy L. Wyatt
Jeremy L. Wyatt
Aleš Leonardis, PhD
Aleš Leonardis, PhD

Links

  •   Document

Towards Deep Compositional Networks

Domen Tabernik, Matej Kristan, Jeremy L. Wyatt and Aleš Leonardis
23rd International Conference on Pattern Recognition, 2016,

Hierarchical feature learning based on convolutional neural networks (CNN) has recently shown significant potential in various computer vision tasks. While allowing high-quality discriminative feature learning, the downside of CNNs is the lack of explicit structure in features, which often leads to overfitting, absence of reconstruction from partial observations and limited generative abilities. Explicit structure is inherent in hierarchical compositional models, however, these lack the ability to optimize a well-defined cost function. We propose a novel analytic model of a basic unit in a layered hierarchical model with both explicit compositional structure and a well-defined discriminative cost function. Our experiments on two datasets show that the proposed compositional model performs on a par with standard CNNs on discriminative tasks, while, due to explicit modeling of the structure in the feature units, affording a straight-forward visualization of parts and faster inference due to separability of the units.

Faculty of Computer and Information Science

Visual Cognitive Systems Laboratory

University of Ljubljana

Faculty of Computer and Information Science

Večna pot 113
SI-1000 Ljubljana
Slovenia
Tel.: +386 1 479 8245