<-- Icons -->
  • People
  • Research
  • Projects
  • Publications
  • Resources
ViCoS Lab

Authors

Domen Tabernik, PhD
Domen Tabernik, PhD
Matej Kristan, PhD
Matej Kristan, PhD
Marko Boben
Marko Boben
Aleš Leonardis, PhD
Aleš Leonardis, PhD

Links

  •   Document

Learning statistically relevant edge structure improves low-level visual descriptors

Domen Tabernik, Matej Kristan, Marko Boben and Aleš Leonardis
International Conference on Pattern Recognition, 2012,

Over the recent years, low-level visual descriptors, among which the most popular is the histogram of oriented gradients (HOG), have shown excellent performance in object detection and categorization. We form a hypothesis that the low-level image descriptors can be improved by learning the statistically relevant edge structures from natural images. We validate this hypothesis by introducing a new descriptor called the histogram of compositions (HoC). HoC exploits a learnt vocabulary of parts from a state-of-the-art hierarchical compositional model. Furthermore, we show that HoC is a complementary descriptor to HOG. We experimentally compare our descriptor to the popular HOG descriptor on the task of object categorization. We have observed approximately 4% improved categorization performance of HoC over HOG at lower dimensionality of the descriptor. Furthermore, in comparison to HOG, we show a categorization improvement of approximately 11% when combining HOG with the proposed HoC.

Faculty of Computer and Information Science

Visual Cognitive Systems Laboratory

University of Ljubljana

Faculty of Computer and Information Science

Večna pot 113
SI-1000 Ljubljana
Slovenia
Tel.: +386 1 479 8245