<-- Icons -->
  • People
  • Research
  • Projects
  • Publications
  • Resources
ViCoS Lab

Authors

Matej Kristan, PhD
Matej Kristan, PhD
Aleš Leonardis, PhD
Aleš Leonardis, PhD

Links

  •   Document

Multivariate Online Kernel Density Estimation

Matej Kristan and Aleš Leonardis
Computer Vision Winter Workshop, 2010,

We propose an approach for online kernel density estimation (KDE) which enables building probability density functions from data by observing only a single data-point at a time. The method maintains a non-parametric model of the data itself and uses this model to calculate the corresponding KDE. We propose an new automatic bandwidth selection rule, which can be computed directly from the non-parametric model of the data. Low complexity of the model is maintained through a novel compression and refinement scheme. We compare the online KDE to some state-of-the-art batch KDEs on examples of estimating distributions and on an example of classification. The results show that the online KDE generally achieves comparable performance to the batch approaches, while producing models with lower complexity and allowing online updating using only a single observation at a time.

Faculty of Computer and Information Science

Visual Cognitive Systems Laboratory

University of Ljubljana

Faculty of Computer and Information Science

Večna pot 113
SI-1000 Ljubljana
Slovenia
Tel.: +386 1 479 8245