<-- Icons -->
  • People
  • Research
  • Projects
  • Publications
  • Resources
ViCoS Lab

Authors

Matic Fučka, MSc
Matic Fučka, MSc
Vitjan Zavrtanik, PhD
Vitjan Zavrtanik, PhD
Danijel Skočaj, PhD
Danijel Skočaj, PhD

Links

  •   GitHub repository
  •   External link

Tags

anomaly detection

TransFusion – A Transparency-Based Diffusion Model for Anomaly Detection

Matic Fučka, Vitjan Zavrtanik and Danijel Skočaj
ECCV 2024, 2024,

Surface anomaly detection is a vital component in manufacturing inspection. Current discriminative methods follow a two-stage architecture composed of a reconstructive network followed by a discriminative network that relies on the reconstruction output. Currently used reconstructive networks often produce poor reconstructions that either still contain anomalies or lack details in anomaly-free regions. Discriminative methods are robust to some reconstructive network failures, suggesting that the discriminative network learns a strong normal appearance signal that the reconstructive networks miss. We reformulate the two-stage architecture into a single-stage iterative process that allows the exchange of information between the reconstruction and localization. We propose a novel transparency-based diffusion process where the transparency of anomalous regions is progressively increased, restoring their normal appearance accurately while maintaining the appearance of anomaly-free regions using localization cues of previous steps. We implement the proposed process as TRANSparency DifFUSION (TransFusion), a novel discriminative anomaly detection method that achieves state-of-the-art performance on both the VisA and the MVTec AD datasets, with an image-level AUROC of 98.5% and 99.2%, respectively. Code: https://github.com/MaticFuc/ECCV_TransFusion

Faculty of Computer and Information Science

Visual Cognitive Systems Laboratory

University of Ljubljana

Faculty of Computer and Information Science

Večna pot 113
SI-1000 Ljubljana
Slovenia
Tel.: +386 1 479 8245