<-- Icons -->
  • People
  • Research
  • Projects
  • Publications
  • Resources
ViCoS Lab

ViAMaRo
Robust computer vision methods for autonomous water surface vehicles

basic research project
May 2017 - April 2020

Collaborating partners

  • University of Ljubljana
  • Faculty of Computer and Information Science
  • Faculty of Electrical Engineering
  • Robotina d.o.o.

Funding

  • ARRS (J2-8175)

Researchers

Matej Kristan, PhD
Matej Kristan, PhD
Janez Perš
Janez Perš
Borja Bovcon, PhD
Borja Bovcon, PhD
Jon Muhovič, MSc
Jon Muhovič, MSc
Danijel Skočaj, PhD
Danijel Skočaj, PhD
Luka Čehovin Zajc, PhD
Luka Čehovin Zajc, PhD
Alan Lukežič, PhD
Alan Lukežič, PhD

Mission

Over the last decade the research in “field robotics” has resulted in development of small-sized (~2m long) unmanned surface vehicles (USVs) that can be manually guided or used to follow a pre-programmed path. Due to their portability and ability to navigate relatively shallow waters and narrow marinas, their potential use is indeed large, ranging from coastal water and environmental surveillance, to inspection of man-made structures above and below water surface.

A lot of research in USV has been dedicated to development of hardware, low-level guidance, control, self-organization and communication systems, but the level of autonomy in small-sized USVs is still relatively low. The reason is that research in advanced environment perception capabilities required for a long-term autonomous performance in uncontrolled environments lags behind the control and hardware research. Cameras as light-weight, low-power, information-rich sensors are becoming a viable alternative or addition to other sensorial modalities.

The project overarching goal is to develop functionalities required for robust autonomous navigation of USVs in uncontrolled environments, primarily relying on the captured visual information. The objectives are to develop efficient and robust computer vision approaches for obstacle detection, long-term tracking and fusion with other sensors and camera modalities. A critical requirement of the approaches will be real-time performance, environment adaptation and long-term robustness to temporary failures of sensory information and visual uncertainties. We will propose a framework that will combine such approaches into a model of robot environment, thus enabling robust long-term fully autonomous operation. The developed framework will be verified and validated on an existing integrated system, a USV, performing in real environment.

The work is divided into six work packages:

  • Development of robust obstacle detection approaches able to detect and extract 3D position of large as well as small obstacles (WP1).
  • Development of robust tracking approaches tailored to USV dynamics that enable target re-detection and re-identification (WP2).
  • Development of agile USV environment model that builds a map of USV surrounding, fuses results of multiple sensors, detection and tracking results into a common representation (WP3).
  • Construction of challenging datasets for objective offline validation of the developed methods and tests of selected methods onboard USV (WP4).
  • Work packages WP5 and WP6 contain support activities such as results dissemination and project management. In the following we detail the work packages and tasks.

Project phases:

  • Year 1: Activities on work packages WP1, WP2, WP4, WP5, WP6
  • Year 2: Activities on work packages WP2, WP3, WP4, WP5, WP6
  • Year 3: Activities on work packages WP1, WP3, WP4, WP5, WP6

Project team:

  • iz. prof. Matej Kristan
  • doc. dr. Janez Perš
  • izr. prof. dr. Danijel Skočaj
  • prof. dr. Stanislav Kovačič
  • dr. Luka Čehovin Zajc
  • dr. Rok Mandeljc
  • mag. Alan Lukežič
  • mag. Borja Bovcon
  • mag. Jon Natanael Muhovič
  • mag. Mozetič Dean
  • Duško Vranac

Online datasets:

  • Multimodal marine obstacle detection dataset (MODD2)
  • A USV-oriented segmentation dataset (MaSTr1325)
  • A USV stereo decalibration dataset (SDD)

Open source:

  • ISSM statistical segmentation obstacle detection method (GIT)
  • IMU/Camera calibration routines (GIT)
  • WaSR obstacle detection network (GIT GIT)
  • MODD performnace evaluation routines (GIT)
  • CSRDCF tracker code (GIT)
  • FCLT long-term tracker code (GIT)
  • Lite tracking toolkit (GIT)
  • D3S v_1.0 tracker (GIT)

Videos:

Publications:

  •  
    A segmentation-based approach for polyp counting in the wild
    Vitjan Zavrtanik, Martin Vodopivec and Matej Kristan
    Engineering Applications of Artificial Intelligence, Elsevier, 2020
  •  
    A water-obstacle separation and refinement network for unmanned surface vehicles
    Borja Bovcon and Matej Kristan
    2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020
  •  
    Correcting decalibration of stereo cameras in self-driving vehicles
    Jon Muhovič and Janez Perš
    Sensors, 2020
  •  
    D3S - A Discriminative Single Shot Segmentation Tracker
    Alan Lukežič, Jiří Matas and Matej Kristan
    IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020
  •  
    Performance Evaluation Methodology for Long-Term Single Object Tracking
    Alan Lukežič, Luka Čehovin Zajc, Tomáš Vojíř, Jiří Matas and Matej Kristan
    IEEE Transactions on Cybernetics, 2020
  •  
    Spatially-Adaptive Filter Units for Compact and Efficient Deep Neural Networks
    Domen Tabernik, Matej Kristan and Aleš Leonardis
    International Journal of Computer Vision, 2020
  •  
    The Eighth Visual Object Tracking VOT2020 Challenge Results
    Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder, Joni-Kristian Kamarainen, Luka Čehovin Zajc, Martin Danelljan, Alan Lukezic, et al.
    ECCV2020 workshops, 2020
  •  
    CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark
    Alan Lukežič, Ugur Kart, Jani Käpylä, Ahmed Durmush, Joni-Kristian Kämäräinen, Jiří Matas and Matej Kristan
    IEEE International Conference on Computer Vision (ICCV), 2019
  •  
    Object Tracking by Reconstruction with View-Specific Discriminative Correlation Filters
    Ugur Kart, Alan Lukežič, Matej Kristan, Joni-Kristian Kamarainen and Jiri Matas
    Computer Vision and Pattern Recognition (CVPR), 2019
  •  
    Obstacle Tracking for Unmanned Surface Vessels using 3D Point Cloud
    Jon Muhovič, Rok Mandeljc, Borja Bovcon, Matej Kristan and Janez Perš
    Journal of Oceanic Engineering, IEEE, 2019
  •  
    The MaSTr1325 dataset for training deep USV obstacle detection models
    Borja Bovcon, Jon Muhovič, Janez Pers and Matej Kristan
    2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2019
  •  
    The Seventh Visual Object Tracking VOT2019 Challenge Results
    Matej Kristan, Jiri Matas, Aleš Leonardis, Michael Felsberg, Roman Pflugfelder, Joni-Kristian Kamarainen, Luka Čehovin Zajc, Ondrej Drbohlav, Alan Lukezic, et al.
    ICCV 2019 workshops, 2019
  •  
    Depth Fingerprinting for Obstacle Tracking using 3D Point Cloud
    Jon Muhovič, Rok Mandeljc, Borja Bovcon and Janez Perš
    Computer vision winter workshop, 2018
  •  
    Discriminative Correlation Filter Tracker with Channel and Spatial Reliability
    Alan Lukežič, Tomas Vojir, Luka Čehovin Zajc, Jiri Matas and Matej Kristan
    International Journal of Computer Vision, Springer, 2018
  •  
    Fast Spatially Regularized Correlation Filter Tracker
    Alan Lukežič, Luka Čehovin Zajc and Matej Kristan
    International Electrotechnical and Computer Science Conference (ERK), 2018
  •  
    FuCoLoT - A Fully-Correlational Long-Term Tracker
    Alan Lukežič, Luka Čehovin Zajc, Tomas Vojir, Jiri Matas and Matej Kristan
    Asian Conference on Computer Vision, 2018
  •  
    Obstacle Detection for USVs by Joint Stereo-View Semantic Segmentation
    Borja Bovcon and Matej Kristan
    2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018
  •  
    Spatially-Adaptive Filter Units for Deep Neural Networks
    Domen Tabernik, Matej Kristan and Aleš Leonardis
    Computer Vision and Pattern Recognition, 2018
  •  
    Stereo obstacle detection for unmanned surface vehicles by IMU-assisted semantic segmentation
    Borja Bovcon, Rok Mandeljc, Janez Perš and Matej Kristan
    Robotics and Autonomous Systems, Elsevier, 2018
  •  
    The sixth Visual Object Tracking VOT2018 challenge results
    Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg, Roman Pfugfelder, Luka Čehovin Zajc, Tomas Vojir, Goutam Bhat, Alan Lukezic, et al.
    VOT2018 workshop, ECCV2018, 2018
  •  
    Towards automated scyphistoma census in underwater imagery : a useful research and monitoring too
    Martin Vodopivec, Rok Mandeljc, Tihomir Makovec, Alenka Malej and Matej Kristan
    Journal of sea research, 2018
  •  
    Towards automated scyphistoma census in underwater imagery: a useful research and monitoring tool
    Martin Vodopivec, Rok Mandeljc, Tihomir Makovec, Alenka Malej and Matej Kristan
    Journal of Sea Research, 2018
  •  
    Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking
    Luka Čehovin Zajc, Alan Lukežič, Aleš Leonardis and Matej Kristan
    IEEE International Conference on Computer Vision (ICCV2017), 2017
  •  
    Deformable Parts Correlation Filters for Robust Visual Tracking
    Alan Lukežič, Luka Čehovin Zajc and Matej Kristan
    IEEE Transactions on Cybernetics, 2017
  •  
    Detekcija ovir iz 3D oblaka točk za potrebe avtonomne plovbe
    Jon Muhovič, Rok Mandeljc, Borja Bovcon and Janez Perš
    Zbornik šestindvajsete mednarodne Elektrotehniške in računalniške konference ERK 2017, 2017
  •  
    Discriminative Correlation Filter with Channel and Spatial Reliability
    Alan Lukežič, Tomas Vojir, Luka Čehovin Zajc, Jiri Matas and Matej Kristan
    The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
  •  
    Improving vision-based obstacle detection on USV using inertial sensor
    Borja Bovcon, Rok Mandeljc, Janez Perš and Matej Kristan
    Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis, IEEE, 2017
  •  
    Sledenje objektov s kvadrokopterjem z gibljivo kamero
    Jon Muhovič and Matej Kristan
    ERK 2017, 2017
  •  
    The Visual Object Tracking VOT2017 Challenge Results
    Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder, Luka Čehovin Zajc, Tomas Vojir, Gustav Häger, Alan Lukežič, et al.
    VOT workshop 2017, ICCV workshops 2017, 2017
  •  
    TraX: The visual Tracking eXchange Protocol and Library
    Luka Čehovin Zajc
    Neurocomputing, 2017

Financer:

arrs

Faculty of Computer and Information Science

Visual Cognitive Systems Laboratory

University of Ljubljana

Faculty of Computer and Information Science

Večna pot 113
SI-1000 Ljubljana
Slovenia
Tel.: +386 1 479 8245